기사검색

[사이언스] KAIST, 인공지능으로 3차원 고해상도 나노입자 영상화 기술 개발

가 -가 +

특허뉴스 염현철 기자
기사입력 2021/02/16 [17:45]

 

예종철 교수팀, 투과 전자현미경 X3차원 분광 영상에 인공지능 기술 적용

퀀텀닷 등 나노입자의 양자 효율 및 화학적 안정성을 3차원으로 정밀 해석 가능

 

▲ 상용 퀀텀닷의 투사 데이터 및 개발한 알고리즘으로 복원한 3차원 복원 결과. 픽셀피치:2.68Å (1열) EDX 시스템으로 획득한 잡음이 존재하는 12각도의 투사 데이터. (2열) 제안하는 인공지능 기반 커널 회귀와 잡음 제거 네트워크를 이용하여 복원된 투사 영상. EDX 시스템으로 획득된 데이터에 비해 해상도가 획기적으로 향상되었으며, 퀀텀닷의 영상화가 분명하게 이루어진 것을 볼 수 있다. (3열) 제안하는 알고리즘을 통해 12각도의 투사영상으로 복원된 3차원 영상과 다양한 평면에서의 컷뷰(cutview). 퀀텀닷을 형성하는 각각의 물질들의 분포를 명확하게 확인할 수 있다  © 특허뉴스

 

KAIST는 바이오및뇌공학과 예종철 교수 연구팀이 삼성전자 종합기술원과 공동연구를 통해 나노입자의 3차원 형상과 조성 분포의 복원 성능을 획기적으로 향상한 인공지능 기술을 개발했다고 16일 밝혔다. 공동연구팀은 에너지 분산형 X선 분광법(EDX)을 주사 투과전자현미경(STEM)과 결합한 시스템을 활용했다.

 

이번 연구를 통해 나노입자를 형성하고 있는 물질의 형상과 조성 분포를 정확하게 재구성함으로써, 실제 상용 디스플레이를 구성하는 양자점(퀀텀닷)과 같은 반도체 입자의 정확한 분석에 도움을 줄 것으로 기대된다.

 

에너지 분산형 X선 분광법(이하 EDX)은 나노입자의 성분 분석에 주로 이용되며, X선과 반응한 물체의 성분에 따라 고유한 방출 스펙트럼을 보인다는 점에서 화학적인 분석이 가능하다. 퀀텀닷 및 배터리 등 다양한 나노 소재의 열화 메커니즘과 결함을 해석하기 위해 형상 및 조성 분포 분석이 가능한 이 분광법의 필요성과 중요도가 급증하고 있다.

 

그러나 EDX 측정 신호의 해상도를 향상하기 위해, 나노 소재를 오랜 시간 전자빔에 노출하면 소재의 영구적인 피해가 발생한다. 이로 인해 나노입자의 3차원 영상화를 위한 투사(projection) 데이터 획득 시간이 제한되며, 한 각도에서의 스캔 시간을 단축하거나 측정하는 각도를 줄이는 방식이 사용된다. 기존의 방식으로 획득된 투사 데이터를 이용해 3차원 영상을 복원할 시, 미량 존재하는 원자 신호의 측정이 불가능하거나 복원 영상의 정밀도와 해상도가 매우 낮다.

 

그러나 공동 연구팀이 자체 개발한 인공지능 기반의 커널 회귀(kernel regression)와 투사 데이터 향상(projection enhancement)은 정밀도와 해상도를 획기적으로 발전시켰다. 연구팀은 측정된 데이터의 분포를 네트워크가 스스로 학습하는 인공지능 기반의 커널 회귀를 통해 스캔 시간이 단축된 투사 데이터의 신호 대 잡음비(SNR)를 높인 데이터를 제공하는 네트워크를 개발했다. 그리고 개선된 고화질의 EDX 투사 데이터를 기반으로 기존의 방법으로는 불가능했던 적은 수의 투사 데이터로부터 더욱 정확한 3차원 복원 영상을 제공하는 데 성공했다.

 

▲ 퀀텀닷 합성 시, 코어 제작 과정은 동일하지만 ZnSe / ZnS 쉘(shell)의 형태가 다르도록 쉘 코딩 과정에 차이를 두어 생성한 2종류의 합성QD1(1열)과 합성QD2(2열)를 개발한 알고리즘으로 복원한 결과 비교. 픽셀피치:1.89Å (i) 퀀텀닷의 3차원 복원 결과. (ii-iii) 다양한 평면에서의 컷뷰(cutview). (iv) 방사형 방향에 따른 Sulfur(S)의 3차원 구조 차이를 정량화한 맵. 빨간색 선으로 구분된 ZnS 쉘의 비성장(non-growth) 영역.1열(iv)와 2열(iv)를 통해, 합성QD1보다 유리한 조건에서 제작된 합성QD2의 ZnS의 비성장 영역이 적게 관찰되는 것을 확인할 수 있다. 이는 합성 조건에 따라 제작된 퀀텀닷의 형태적 차이를 제안한 알고리즘을 통해 복원된 영상에서 정확하게 분석할 수 있음을 의미한다  © 특허뉴스

 

연구팀이 개발한 알고리즘은 기존의 EDX 측정 신호 기반 3차원 재구성 기법과 비교해 나노입자를 형성하고 있는 원자의 형상과 경계를 뚜렷하게 구별했으며, 복원된 다양한 코어-(core-shell) 구조의 퀀텀닷 3차원 영상이 샘플의 광학적 특성과 높은 상관관계를 나타내는 것이 확인됐다.

 

예종철 교수는 연구에서 개발한 인공지능 기술을 통해 상용 디스플레이의 핵심 기반이 되는 퀀텀닷 및 반도체 소자의 양자 효율과 화학적 안정성을 더욱 정밀하게 분석할 수 있다고 말했다.

 

예종철 교수 연구팀의 한요섭 박사, 차은주 박사과정, 정형진 석사과정과 삼성종합기술원의 이은하 전문연구원팀의 장재덕, 이준호 전문연구원이 공동 제1 저자로 참여한 이번 연구 결과는 국제 학술지 네이처 머신 인텔리전스(Nature Machine Intelligence)’ 28일 자 온라인판에 게재됐다.

 

논문명은 Deep learning STEM-EDX tomography of nanocrystals 이다.

트위터 페이스북 카카오톡 카카오스토리 band naver URL복사

인공지능,3차원형상,고해상도,나노입자영상화,전자현미경,퀀텀닷,커널회귀, 관련기사

최신기사

URL 복사
x
  • 위에의 URL을 누르면 복사하실수 있습니다.

PC버전 맨위로

Copyright ⓒ 특허뉴스. All rights reserved.